Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.
نویسندگان
چکیده
The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used gasoline motor oil but not in fresh oil and are negligible in used diesel engine oil. The contributions of lubrication oils to abundances of these PAHs in the exhaust were large in some cases and were variable with the age and consumption rate of the oil. These factors contributed to the observed variations in their abundances to total carbon or PM2.5 among the SI composition profiles.
منابع مشابه
Exhaust Emission Analysis of an Internal Combustion Engine Fuelled with Hydrogen-Ethanol Dual Fuel
The work presented in this paper is an attempt to evaluate the exhaust emission characteristics of a hydrogen-ethanol dual fuel combination with different percents of hydrogen substitutions (i.e. 0-80 % by volume and of 20 % increment ) at three different compression ratios of 7:1, 9:1 and 11:1. Experimental investigations have been carried out on a computer interfaced with; four-stroke cycle, ...
متن کاملControl of aldehyde emissions from copper coated spark ignition engine fueled with alcohol blended gasoline
The major pollutants emitted from spark ignition (SI) engine are carbon monoxide (CO) and unburnt hydrocarbons, nitrogen oxides which are hazardous to human beings and environment. If the engine is run with alcohol blended alternate fuels, aldehydes are emitted as significant pollutants, which are carcinogenic and harmful in nature. Hence, control of these aldehyde emissions call for immediate ...
متن کاملEffect of Injection Characteristics on Emissions and Combustion of a Gasoline Fuelled Partially-premixed Compression Ignition Engine
Conventional compression ignition (CI) engines are known for their high thermal efficiency compared to spark ignited (SI) engines. Gasoline because of its higher ignition delay has much lower soot emission in comparison with diesel fuel. Using double injection strategy reduces the maximum heat release rate that leads to NOx emission reduction. In this paper, a numerical study of a gasoline fuel...
متن کاملEngine Performance Parametres and Emissions Reduction Methods for Spark Ignition Engine
An experimental study is carried out to investigate engine performance parameters and methods of reducing emissions from spark ignition engine. The used engine is four stroke four cylinder naturally aspirated spark ignition engine with compression ratio of 9, bore diameter of 80 mm and stroke of 90 mm. The engine performance parameters are presented with and without exhaust gases recirculation ...
متن کاملA Fuel-Based Motor Vehicle Emission Inventory.
A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Gasoline use is known at the stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Air & Waste Management Association
دوره 57 6 شماره
صفحات -
تاریخ انتشار 2007